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Simple Summary: This pilot study on the trajectory of the gut microbiota (GM) in patients with

epithelial ovarian cancer undergoing neoadjuvant and adjuvant chemotherapy highlighted peculiar

dynamics associated with the therapeutic outcome. In particular, platinum-resistant patients showed

a marked temporal reduction in GM diversity and increased instability with loss of health-associated

taxa and increased proportions of lactate-producing microorganisms compared to those sensitive to

platinum. These potential GM signatures of therapeutic failure are detectable within the first half

of chemotherapy cycles, suggesting that early integrated treatments also aimed at modulating GM

could influence therapeutic outcome. Further studies in larger cohorts combining multiple omics

and possibly animal models are urgently needed for in-depth mechanistic understanding.

Abstract: Epithelial ovarian cancer (EOC) is one of the most lethal and silent gynecological tumors.

Despite appropriate surgery and chemotherapy, relapse occurs in over half of patients with a poor

prognosis. Recently, the gut microbiota (GM) was hypothesized to influence the efficacy of anticancer

therapies, but no data are available in EOC. Here, by 16S rRNA gene sequencing and inferred

metagenomics, we profiled the GM of EOC patients at diagnosis and reconstructed its trajectory

along the course of neoadjuvant or adjuvant chemotherapy up to follow-up. Compared to healthy

subjects, the GM of EOC patients appeared unbalanced and severely affected by chemotherapy.

Strikingly, discriminating patterns were identified in relation to the therapeutic response. Platinum-

resistant patients showed a marked temporal reduction in GM diversity and increased instability

with loss of health-associated taxa and increased proportions of Coriobacteriaceae and Bifidobacterium.

Notably, most of these microorganisms are lactate producers, suggesting increased lactate production

as supported by inferred metagenomics. In contrast, the GM of platinum-sensitive patients appeared

overall more diverse and stable and enriched in lactate utilizers from the Veillonellaceae family. In

conclusion, we identified potential GM signatures of therapeutic outcome in EOC patients, which

could open up new opportunities for cancer prognosis and treatment.

Keywords: gut microbiota; epithelial ovarian cancer; chemotherapy; neoadjuvant therapy;

adjuvant therapy; platinum resistance; platinum sensitivity; lactate; 16S rRNA gene sequencing;

inferred metagenomics
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1. Introduction

Epithelial ovarian cancer (EOC) is a relatively rare disease whose incidence rate is
very high in western countries, such as Europe and North America, with eight cases out
of 100,000 [1,2]. Currently, there is no established screening test for this disease, and
this cancer represents the most lethal and silent gynecological tumor with diagnosis in
advanced stages (III–IV) in about 65% of cases and a 5-year relative survival of only
20–30% [3]. Primary tumors originate from the epithelium of the ovary, the fallopian tube,
or the peritoneum and then spread to the peritoneal surfaces and viscera of the pelvis and
the whole abdomen (carcinosis). The cancer’s spread by blood and lymphatic way is a
rare event [4]. The standard therapeutic approach is surgical cytoreduction followed by
first-line standard chemotherapy with platinum and taxane compounds. When surgery
is not possible for disease extent, neoadjuvant chemotherapy is an option to reduce the
burden of the disease and achieve cytoreduction in responders; in non-responders, the
prognosis is poor. Despite optimal surgery and appropriate first-line chemotherapy, about
70–80% of patients with EOC develop disease recurrence, and patients are candidates to
new therapeutic opportunities, such as novel drug classes combined with different schemes
of chemotherapy [5]. When EOC recurs, the prognosis is very poor. Recurrence occurs in
about 23% of patients during or within 6 months after first-line chemotherapy (platinum-
resistant, PR) and 60% after 6 months (platinum-sensitive, PS). Progressively, PS patients
experience shorter disease-free intervals, eventually becoming PR [6]. Pathogenesis of EOC
is poorly understood. Risk factors are represented by age, late menopause, genetic factors
(breast cancer gene (BRCA) mutation and Lynch syndrome), and environmental agents. The
role of infections and inflammation in the pathogenesis of EOC is not completely elucidated;
it is likely that inflammation and ovulation with changes in hormone levels lead to DNA
damage by oxidative stress. Pelvic inflammatory disease, although not a recognized risk
factor, is associated with EOC in several publications. The correlation between some
agents such as Chlamydia, HPV, and cytomegalovirus infections was investigated, but it is
difficult to make any firm conclusion. Interestingly, studies by Banerjee et al. [7] profiled
the EOC oncobiome, showing distinct viral, bacterial, and fungal signatures compared to
matched and non-matched controls, including increased representation or unique detection
of retroviridiae and HPV, several members of Proteobacteria and Firmicutes, yeasts, and
zygomycetous fungi. Although it is not yet clear whether these microorganisms are actually
involved in tumor pathogenesis, the manipulation of human microbiomes was recently
advanced as a strategy to affect tumor progression and response to therapies [8–11]. In this
scenario, special attention is paid to the gut microbiota (GM), i.e., the richest and the most
diverse microbial community of the human holobiont closely linked to our health [12].
Due to its ability to modulate immune responses and interfere with drug metabolism [13],
GM is indeed a very hot topic in cancer research [14–16]. In particular, since the first
landmark studies in animal models [17,18], an ever-growing body of evidence indicates
that peculiar GM profiles can improve the efficacy of anticancer therapy while reducing
side effects. These “more favorable” profiles appear to share greater diversity and greater
proportions of health-associated microorganisms, mainly producers of short-chain fatty
acids (SCFAs) [10,19]. However, the vast majority of studies were conducted in patients
with hematological malignancies or melanoma, while, to date, no information is available
on the possible role of GM in EOC.

In an attempt to bridge this gap, here, we prospectively profiled the GM of 24 women
with EOC through 16S rRNA gene sequencing and reconstructed its trajectories over the
course of chemotherapy in relation to the therapeutic response (PR vs. PS). We recruited
patients with high-grade papillary serous carcinoma, which is the most frequent histotype
involved in carcinosis. Fecal samples were collected at diagnosis and before and after each
chemotherapeutic cycle until follow-up over a period of about 1.5 years. The data herein
generated strongly suggest that the GM dynamics during chemotherapy could serve as a
prognostic biomarker and innovative therapeutic target for EOC.
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2. Materials and Methods

2.1. Patient Enrollment and Fecal Sampling

Patients with EOC diagnosis referred to the Division of Oncologic Gynecology, IR-
CCS Azienda Ospedaliero-Universitaria di Bologna (Bologna, Italy) were enrolled for a
pilot longitudinal study on GM from diagnosis (T0) through chemotherapy treatment
(pre and post each cycle performed every 3 weeks) until the follow-up. The local Ethical
Committee of Area Vasta Emilia Romagna approved the study (CE Emilia Area Vasta N.
122/2017/O/Tess). Written informed consent was obtained from each enrolled patient
during the first access to the Gynecologic Oncology Unit. Inclusion criteria were: (i) sus-
picious or confirmed first diagnosis of ovarian cancer; (ii) patients treated at Gynecologic
Oncology Unit; and (iii) patients available to collect stool samples at diagnosis, during
treatment, and at follow-up. Patients with carcinosis or metastasis from other organs,
inflammatory bowel disease, and chronic antibiotic intake were excluded from the study.
All enrolled patients were clustered in two groups (12 vs. 12 subjects) depending on
the therapeutic program: (i) women with moderate disease extension were treated by
surgical cytoreduction followed by first-line standard chemotherapy with platinum and
taxane compounds (adjuvant group); (ii) patients with extensive disease were treated
with neoadjuvant chemotherapy with platinum and taxane compounds before surgical
cytoreduction (neoadjuvant group). Evaluable data were age, BMI, personal clinical history,
histological types, International Federation of Gynecology and Obstetrics (FIGO) stage,
number and doses of chemotherapy cycles, and surgical information including extension
of disease (peritoneal cancer index, PCI) (Table 1). During the study, patients were asked to
report any other concomitant therapies. At the end of both treatments (i.e., adjuvant and
neoadjuvant chemotherapy), follow-up was performed as follows in order to detect relapse:
CA 125 examination and clinical assessment every 4 months for the first 2 years and then
every 6 months for 5 years with a CT scan every 6 months. During the post-treatment reval-
uations, the EOC subjects for both groups were further divided into two sub-groups based
on the time elapsed between the last platinum intake and the diagnosis of relapse: (i) fewer
than 6 months (platinum-resistant; PR), or (ii) more than 6 months (platinum-sensitive;
PS). Fecal samples were collected at diagnosis from all patients (n = 24) and before and
after each chemotherapy cycle (n = 344). Specifically, the last/first stools were collected
in the 3 days before/after each cycle. For follow-up, samples were taken every 3 months
in all patients with no signs of relapse (n = 38). A total of 406 fecal samples were thus
collected, stored at −80 ◦C, and shipped on dry ice to the Department of Pharmacy and
Biotechnology, University of Bologna (Bologna, Italy) for GM analysis.

2.2. Microbial DNA Extraction

Two hundred and fifty milligrams of fecal sample were used for microbial DNA
extraction through a method combining bead-beating and column purification, as described
in Yu and Morrison [20]. The following modifications were introduced: 1 mL of lysis buffer
(500 mM NaCl, 50 mM Tris-HCl, pH 8, 50 mM EDTA, and 4% SDS), four 3 mm glass beads,
and 0.5 g of 0.1 mm zirconia beads (BioSpec Products, Bartlesville, OK, USA) were used
to perform chemical and mechanical lysis of the samples in a FastPrep instrument (MP
Biomedicals, Irvine, CA, USA) at 5.5 movements/s for 1 min, repeated three times [21].
Samples were incubated at 95 ◦C for 15 min and then centrifuged at 13,000 rpm for 5 min.
Subsequently, the supernatant was added with 10 M ammonium acetate and centrifuged
for 10 min at 13,000 rpm. The supernatants were then incubated in ice for 30 min with one
volume of isopropanol for nucleic acid precipitation. A washing step with 70% ethanol
was performed, and the precipitated nucleic acids were resuspended in 100 µL of TE
buffer (10 mM Tris-HCl, 1 mM EDTA pH 8.0). Two microliters of 10 mg/mL DNase-free
RNase were then added, and the samples were incubated at 37 ◦C for 15 min. Finally,
a column-based method was used for DNA purification using the DNeasy Blood and Tissue
Kit (QIAGEN, Hilden, Germany) as per manufacturer’s instructions. The yield and the
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quality of the extracted DNA were assessed with a NanoDrop ND-1000 spectrophotometer
(NanoDrop Technologies, Wilmington, DE, USA).

Table 1. Patients’ characteristics.

Patient ID Therapeutic
Program

Age
(Years)

BMI
(kg/m2)

FIGO
Stage

BRCA
Gene
Status

Nr.
Cycles

PCI
CA125 at

Diagnosis
(U/mL)

Residual
Disease

(CC)

PFS
(Months)

OS
(Months)

Follow-
Up

State

Response
to

Platinum

MiCrO 1 neoadj 51 20 IV WT 15 16 1030 CC-2 1 9 DWD PR
MiCrO 2 neoadj 68 34 IIIC WT 6 22 1800 CC-0 10 21 DWD PR
MiCrO 4 neoadj 71 25 III WT 9 16 1256 CC-0 24 39 AWD PS
MiCrO 6 neoadj 71 21 IIIC WT 10 20 1200 CC-1 14 21 DWD PR
MiCrO 8 neoadj 48 21 III BRCA1m 6 18 999 CC-0 15 16 AWD PS
MiCrO 9 neoadj 58 24 IV WT 8 25 1100 CC-0 29 30 NED PS
MiCrO 10 neoadj 56 20 IIIC WT 9 27 2100 CC-0 12 17 DWD PR
MiCrO 16 neoadj 55 21 III BRCA2m 6 25 1050 CC-0 23 23 AWD PS
MiCrO 23 neoadj 51 20 IIIC BRCA1m 9 21 499 CC-0 18 25 AWD PS
MiCrO 24 neoadj 61 21 III WT 13 24 499 CC-0 13 13 NED PS
MiCrO 25 neoadj 67 20 IIIC WT 9 27 999 CC-2 16 22 AWD PR
MiCrO 28 neoadj 48 24 IIIC BRCA1m 6 37 1030 CC-0 12 12 DWD PR
MiCrO 3 adj 69 23 IIIC WT 6 18 1000 CC-0 8 8 NED PS
MiCrO 5 adj 61 23 IIIC WT 6 17 750 CC-1 14 21 AWD PS
MiCrO 7 adj 57 21 IV WT 6 29 1029 CC-1 10 13 DWD PR
MiCrO 11 adj 67 23 IIIC BRCA1m 6 21 1340 CC-0 11 18 AWD PR
MiCrO 12 adj 43 22 IIB WT 6 3 1000 CC-0 13 13 NED PS
MiCrO 13 adj 53 23 IV WT 8 20 850 CC-2 14 14 AWD PR
MiCrO 17 adj 53 19 IV BRCA1m 6 18 1000 CC-0 17 18 AWD PS
MiCrO 19 adj 57 20 IC BRCA1/2m 6 0 679 CC-0 15 15 NED PS
MiCrO 22 adj 39 20 IV BRCA1m 6 30 840 CC-0 18 18 AWD PS
MiCrO 31 adj 68 24 IIIB BRCA1m 6 3 350 CC-0 15 15 AWD PS
MiCrO 33 adj 69 25 IIIC WT 6 22 286 CC-0 12 12 NED PS
MiCrO 39 adj 54 32 IIIC WT 6 11 453 CC-0 10 10 NED PS

Adj = adjuvant chemotherapy; AWD = alive with disease; BMI = body mass index; BRCAm = breast cancer gene mutation;
CC = completeness cytoreduction; DWD = death with disease; FIGO = International Federation of Obstetrics and Gynecology; NED = no
evidence of disease; Neoadj = neoadjuvant chemotherapy; OS = overall survival; PCI = peritoneal cancer index; PFS = progression-free
survival; PR = platinum-resistant; PS = platinum-sensitive; WT = wild-type.

2.3. 16S rRNA Gene Amplification and Sequencing

The V3–V4 hypervariable regions of the 16S rRNA gene were amplified with primers
341F and 785R, including Illumina adapter overhang sequences, as described in
Rampelli et al. [21]. For library preparation, the following steps were performed: magnetic
bead-based amplicon clean-up (Agencourt AMPure XP, Beckman Coulter, Brea, CA, USA),
limited-cycle PCR using Nextera technology to index libraries, and another clean-up as
above. Indexed libraries were pooled at an equimolar concentration of 4 nM, denatured,
and diluted to 5 pM prior to sequencing on an Illumina MiSeq platform with a 2 × 250 bp
paired-end protocol per manufacturer’s instructions (Illumina, San Diego, CA, USA).

2.4. Bioinformatics and Statistics

All sequences were processed using a pipeline that combined PANDASeq [22] and
QIIME 2 [23]. After filtering the reads by length and quality, the DADA2 pipeline was used
to bin the remaining reads into amplicon sequence variants (ASVs) [24]. Taxonomic classi-
fication was performed using the VSEARCH algorithm [25] on the Greengenes database
(May 2013 release). Chimeras were removed during the bioinformatic steps. Metagenome
prediction of Greengenes-picked ASVs was performed with PICRUSt2 [26] using Meta-
Cyc [27] as a reference for pathway annotation. Publicly available sequences of healthy
women matched to EOC patients for several GM-associated confounding factors (i.e., age,
BMI, and geography) were downloaded and used as a control. Sequences were from
different cohorts to minimize study-related bias, specifically from: De Filippis et al. [28]
(deposited in NCBI SRA: Bioproject ID SRP042234), Schnorr et al. [29] (Italian samples;
MG-RAST database: project ID mgp12183), and Biagi et al. [30] (elderly samples; MG-RAST
database: project ID mgp17761). Alpha diversity was assessed using the number of ob-
served ASVs and the Simpson inverse index. Bray–Curtis and weighted and unweighted
UniFrac distances were used to build principal coordinates analysis (PCoA) graphs. All
statistical analyses were carried out with the R software. PCoA plots were generated
using the “vegan” (Available online: http://www.cran.r-project.org/package=vegan/,
accessed on 29 April 2020) and “Made4” [31] packages, and data separation was tested
by a permutation test with pseudo-F ratio (function “Adonis” in “vegan”). To assess

http://www.cran.r-project.org/package=vegan/
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differences in diversity and GM composition at different taxonomic levels among groups,
Kruskal–Wallis test followed by post-hoc Wilcoxon test were used. Discriminating taxa
and MetaCyc pathways between groups were identified through linear discriminant anal-
ysis (LDA) effect size (LEfSe) algorithm [32]. Only taxa with LDA score > 2 at p < 0.05
were considered discriminating. For the generation of co-abundance groups (CAGs), only
bacterial genera present in at least 10% of the samples were considered. As previously
shown in Claesson et al. [33], associations among genera were assessed using the Kendall
correlation test, visualized using hierarchical Ward-linkage clustering based on Spearman
correlation coefficients, and used to define CAGs. Wiggum plot networks were created
using Cytoscape software [34] with the circle size proportional to the relative bacterial
abundance and the connection between nodes representing significant Kendall correlations
between genera (p < 0.05). Progression-free survival and overall survival according to GM
were estimated using the Kaplan–Meier method, and comparisons were made using the
log-rank test. As GM variables, alpha diversity (as number of observed ASVs) and relative
abundance of discriminating taxa were considered, and the cohort was stratified using
the median of each variable as previously shown [35,36]. As for the time-point, based on
the differences that emerged between PR and PS patients, samples were selected halfway
through the chemotherapy treatment (i.e., before cycle 7 for neoadjuvant therapy and
before cycle 4 for adjuvant therapy) (see also Results). Power calculation was computed
with micropower R package [37]; we found that the size of PS and PR groups allowed
90% power to detect an ω2 of 0.003. When necessary, p values were corrected for multiple
comparisons using the Benjamini–Hochberg method. A false discovery rate (FDR) ≤ 0.05
was considered as statistically significant. FDR ≤ 0.1 was considered as a trend.

3. Results

3.1. Study Cohort Description

Twenty-four women affected by high-grade serous EOC were enrolled at the Division
of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna,
Italy. Patient characteristics are shown in Table 1. The median age was 57 years (range,
39–71) and body mass index (BMI) 22 kg/m2 (range, 19–34). Twenty-two (92%) patients
experienced advanced FIGO stage (III–IV), and nine (37%) patients reported germinal
BRCA mutation. All patients received a median of six cycles of carboplatin and taxane
(range, 6–15), carcinomatosis was present in all patients except one case of stage IC, and
peritoneal cancer index (PCI) showed a median of 20 (range, 0–37). Twelve patients
received neoadjuvant chemotherapy because they were judged not optimally cytoreducible
at diagnostic laparoscopy [5], and 12 received up-front surgery. No differences were found
in age, BMI, FIGO stage, or BRCA mutation between the neoadjuvant and the adjuvant
groups, although neoadjuvant-treated patients were characterized by higher PCI (median
in neoadjuvant vs. adjuvant group, 23 vs. 18) (Wilcoxon test, p = 0.0044), number of cycles
received (9 vs. 6) (p = 0.0477), and levels of CA 125 (1040 vs. 845) (p = 0.0486). In the
neoadjuvant group, six patients were judged platinum-resistant (PR) and six platinum-
sensitive (PS) according to relapse and residual disease after surgery. On the other hand,
in the adjuvant group, three patients were grouped as PR and nine as PS. When we
compared PR and PS patients, no differences in age, BMI, or number of chemotherapy
cycles were observed, while PCI (median in PR vs. PS patients, 24.5 vs. 22.5) (p = 0.0579)
and CA 125 (1115 vs. 1024.5) (p = 0.0023) levels tended to be or were higher in PR patients
of the neoadjuvant group. Median progression-free survival (PFS) and overall survival
(OS) in the whole cohort were 14 (range, 1–29) and 16 months (8–39), respectively.
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For each patient, fecal sampling took place at several time-points starting from diag-
nosis (T0), before and after each chemotherapy cycle (C, pre and post), and at follow-ups
every 3 months from the end of therapy for a total of 406 fecal samples over a study period
of approximately 1.5 years (Figure 1). Fecal samples were subjected to 16S rRNA gene
sequencing, yielding 12,399,150 high-quality reads (mean ± SD, 30,540 ± 21,518).

≤

≤

Figure 1. Study design. Schematic representation of fecal sampling for patients with epithelial ovarian cancer given

neoadjuvant (top) or adjuvant (bottom) chemotherapy. Diamonds indicate sampling time-points, i.e., at diagnosis (T0),

before and after each chemotherapy cycle (C), and at follow-ups every 3 months from the end of therapy. Chemotherapy

courses were repeated every 3 weeks depending on the tumor response.

3.2. The Gut Microbiota in EOC Patients at Diagnosis

The GM of 24 EOC patients at diagnosis (T0) was profiled and compared with that of
24 healthy women from previous studies [28–30] matched by several microbiota-associated
confounding variables (i.e., age, BMI, and geography) [38]. No difference in alpha diver-
sity was observed between two groups using the Simpson’s inverse index (Wilcoxon test,
p = 0.3). In contrast, Bray–Curtis distance-based principal coordinates analysis (PCoA)
showed significant segregation between the GM of EOC patients and that of healthy
subjects (permutation test with pseudo-F ratio, p = 0.001) (Figure 2A). Regarding the taxo-
nomic composition, the GM of both patients and controls was dominated by the phylum
Firmicutes (mean relative abundance in patients vs. controls, 68.8% vs. 73.9%) along
with Bacteroidetes (11.2% vs. 15.1%), Actinobacteria (13.2% vs. 7.1%), and Proteobac-
teria (4.6% vs. 1.9%) (Figure 2B). Consistent with the typical adult-like GM profile [39],
Ruminococcaceae (29.4% vs. 32.5%), Lachnospiraceae (18.3% vs. 32.5%), and Bacteroidaceae
(6.3% vs. 11.7%) were the most abundant families. However, EOC patients were charac-
terized by decreased proportions of Lachnospiraceae (Wilcoxon test, p < 0.001) as well as
other families such as Bifidobacteriaceae, Clostridiaceae, Rikenellaceae, and Porphyromonadaceae
(p ≤ 0.01). On the other hand, the EOC-related GM profiles were markedly enriched in
Coriobacteriaceae (p < 0.001) (Figure 2C). Additionally, at the genus level, several differences
emerged between the two groups (Figure 2D). In particular, compared to healthy subjects,
the GM of EOC patients was enriched in Coriobacteriaceae members, Adlercreutzia and
Collinsella (p ≤ 0.05), as well as in Lactococcus and Lachnobacterium (p ≤ 0.01), while it was
depleted in several Lachnospiraceae genera such as Coprococcus, Blautia, Dorea, Lachnospira,
and Roseburia along with Bifidobacterium (p ≤ 0.01).
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≤

Figure 2. The gut microbiota of EOC patients at diagnosis compared to healthy women. (A) PCoA based on Bray–Curtis

dissimilarity between the genus-level profiles of 24 EOC patients and 24 healthy age/BMI-matched women living in the

same geographical area (across Italy). A significant separation between groups was found (permutation test with pseudo-F

ratio, p = 0.001). Ellipses include 95% confidence area based on the standard error of the weighted average of sample

coordinates. (B) Pie charts showing the average relative abundance of major phyla (outer ring) and families (inner ring) in

the gut microbiota of EOC patients and healthy women. Only taxa with relative abundance > 0.1% in at least one sample

are shown. Relative abundance (mean ± SEM) of families (C) and genera (D) differentially represented between groups

(Wilcoxon test, * for p ≤ 0.05; ** for p < 0.01; *** for p < 0.001). Only families with mean relative abundance > 0.5% in at least

one of the two groups are shown.

3.3. Gut Microbiota Dynamics in EOC Patients during Chemotherapy

The dynamics of GM in 24 women with EOC were reconstructed during adjuvant and
neoadjuvant treatments (12 vs. 12 patients) from baseline (T0) through each chemotherapy
cycle (C, pre and post) until follow-up. For both patient groups, alpha diversity was found
to fluctuate over time with, in particular, a significant reduction from the baseline during
the first few cycles of chemotherapy treatments (preC3 for the adjuvant group and preC4
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for the neoadjuvant group) (Wilcoxon test, p ≤ 0.1) (Figure S1). PCoA based on weighted
UniFrac distances showed no separation between groups nor within each group over time
(permutation test with pseudo-F ratio, p > 0.05) but strong individuality, with samples
from the same subject clustering nearby for both treatment groups (p = 0.001) (Figure S1).
As previously shown at baseline, the GM was dominated by the phylum Firmicutes at
all time-points considered regardless of the treatment group with varying proportions
of Bacteroidetes, Actinobacteria, Proteobacteria, and Verrucomicrobia. Compared to T0,
patients receiving neoadjuvant therapy showed a significant increase in Actinobacteria
over time (especially in samples preC4, postC6, and postC7), while those given adjuvant
therapy showed a significant reduction in Firmicutes in the first few cycles (preC3 and
postC4) (Wilcoxon test, p < 0.05). Consistent results were obtained at the family level with
an increase over time in the relative abundance of Coriobacteriaceae in patients undergoing
neoadjuvant chemotherapy accompanied by a reduction in Ruminococcaceae, especially
Faecalibacterium and Ruminococcus, almost after every chemotherapy cycle (p < 0.05). For
patients given adjuvant therapy, we mainly observed a reduction in Lachnospiraceae (preC5
and preC7, p < 0.05) (Figure S2).

3.4. Potential Gut Microbiota Signatures of Therapeutic Response

Within each treatment group, patients were stratified by platinum sensitivity (PS) or
resistance (PR) based on the time before relapses appeared (beyond or within 6 months of
first-line chemotherapy, respectively), and their GM profiles were followed over time. As
discussed above for the whole cohort, an overall trend towards reduced alpha diversity
in the first treatment cycles was observed across all study groups (Figure 3A). This was
particularly evident for PR patients receiving neoadjuvant therapy for whom GM diversity
dropped dramatically before the C7 cycle (Wilcoxon test, p = 0.03). Interestingly, these
low levels tended to persist over time unlike what was observed for PS patients given
neoadjuvant therapy, whose values remained substantially high until follow-up. A similar
pattern (i.e., almost no change in the PS group with greater fluctuations in the PR group)
was observed in EOC patients receiving adjuvant treatment. In particular, although not
significant, the lowest alpha diversity value for PR patients receiving adjuvant therapy was
observed at about half of the treatment (i.e., preC4). Based on these considerations, the
number of observed ASVs in preC7 samples for neoadjuvant therapy and preC4 samples
for adjuvant treatment was used to evaluate associations with progression-free survival and
overall survival in the whole cohort. As shown in the Kaplan–Meier curves of Figure 3B,
higher diversity at these time-points tended to be associated with longer survival (both
progression-free and overall) (log-rank test, p ≤ 0.1).

As for beta diversity, no intra-group separation over time was evident in the weighted
UniFrac-based PCoA plot (permutation test with pseudo-F ratio, p > 0.05), but there was
in the samples segregated by therapeutic response, i.e., there was significant separation
between all samples from PR patients and those from PS patients for both treatment groups
(neoadjuvant group: p = 0.009; adjuvant group: p = 0.001) (Figure S3). Noteworthy is that
such a separation was not significant at diagnosis (p > 0.05) (Figure S4). In order to further
explore the GM structural variation, we calculated the weighted UniFrac distances between
each time-point and the respective T0 for all PS and PR patients during both chemotherapy
treatments (i.e., neoadjuvant vs. adjuvant) (Figure 4). Interestingly, the GM underwent
more or less extensive fluctuations depending on the study group. In particular, for PR
patients undergoing neoadjuvant treatment, the distance from T0 increased before the C7
cycle, then remained above the baseline inter-individual variation to drop only in the last
time-points and in the follow-up. In contrast, the variations in the corresponding PS group
were mostly lower than the inter-patient variability at T0. Similarly, for adjuvant treatment,
the distance values for PR patients were often greater than the average inter-patient
variation at baseline, while the GM variation in PS patients remained nearly constant over
time. Taken together, these data suggest greater GM resistance to chemotherapy-related
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perturbations for PS patients with greater temporal instability with loss of individual
fingerprint for PR patients.

≤

≤

Figure 3. Dynamics of alpha diversity in EOC patients during chemotherapy based on therapeutic response and association

with survival. (A) Boxplots showing the distribution of the number of observed ASVs during neoadjuvant (top) or adjuvant

(bottom) chemotherapy. Patients were stratified by response to therapy: PR, platinum-resistant (left) vs. PS, platinum-

sensitive (right). C, chemotherapy cycle. Wilcoxon test, * for p ≤ 0.05. (B) Kaplan–Meier curves for progression-free survival

(left) and overall survival (right) in the whole cohort. EOC patients were stratified by higher or lower number of observed

ASVs (relative to median) at the preC7 (for neoadjuvant therapy) or the preC4 (for adjuvant therapy) time-points. Log-rank

test, p ≤ 0.1.
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Figure 4. Dynamics of beta diversity in EOC patients during chemotherapy based on therapeutic response. Boxplots show

the distribution of weighted UniFrac distances between each time-point and the respective T0 for each EOC patient during

neoadjuvant (top) or adjuvant (bottom) chemotherapy. Patients were stratified by response to therapy: PR, platinum-

resistant (left) vs. PS, platinum-sensitive (right). The mean inter-patient variability at baseline (i.e., T0) is depicted as a line

in each plot. C, chemotherapy cycle.

In an attempt to identify potential taxonomic markers of platinum response, a lin-
ear discriminant analysis (LDA) effect size (LEfSe) analysis was performed (Figure 5).
Members of Actinobacteria, including the Coriobacteriaceae family with Eggerthella and un-
classified genera and Bifidobacterium, were found to discriminate for PR patients regardless
of chemotherapy group (i.e., neoadjuvant vs. adjuvant). On the other hand, the GM of PS
patients was discriminated by Veillonellaceae members (i.e., Veillonella, Megasphaera, and Dial-
ister) as well as by Catenibacterium and Anaerotruncus. As for peculiarities of each treatment
group, Bacteroidetes members (Bacteroides, Prevotella, and Parabacteroides), Faecalibacterium,
and Acidaminococcus were characteristic of PS patients undergoing adjuvant chemotherapy,
while Desulfovibrio, Paraprevotella, Anaerostipes, Sutterella, and Pseudoramibacter_Eubacterium
were characteristic of those receiving the neoadjuvant treatment. Furthermore, the GM of
PR patients of the neoadjuvant group was specifically discriminated by Serratia, Sarcina,
Staphylococcus, Peptococcus, Haemophilus, Turicibacter, Streptococcus, and Collinsella, while
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that of PR patients receiving adjuvant therapy was discriminated by Coprobacillus, Coprococ-
cus, [Eubacterium], Dorea, and Dehalobacterium. The temporal dynamics of the main taxa
identified as discriminating between PR and PS patients are reported in Figure S5. Among
these, it is worth noting that the proportions of Coriobacteriaceae, especially Eggerthella, and
Bifidobacterium were overall considerably higher in PR than in PS patients throughout the
course of treatment. In contrast, Veillonellaceae members, Catenibacterium, and Anaerotruncus
were poorly represented if not absent in the GM of PR patients at the different time-points
while reaching high relative abundance values in PS patients during therapy. Consistently,
Kaplan–Meier survival curves showed that higher relative abundance of Coriobacteriaceae
halfway through the chemotherapy treatment was associated, albeit not significantly, with
lower survival probability, while an opposite trend was observed for Veillonellaceae (log-
rank test, p ≤ 0.1) (Figure S6). It should be noted that all the taxa mentioned above were not
differentially represented at baseline between PR and PS patients receiving neoadjuvant
or adjuvant therapy (Wilcoxon test, p > 0.05) and that some differences, particularly the
overabundance of Eggerthella in PR patients (follow-up vs. baseline, neoadjuvant group:
p = 0.03) and Dialister in PS patients (adjuvant group: p = 0.1), persisted or tended to persist
in the first follow-up 3 months after the end of the therapy. Six months after the end of the
treatments, the proportions of Dialister in PS patients who received adjuvant chemotherapy
tended to remain higher (p = 0.1), while in PS patients of the neoadjuvant group, there
were significant or near-significant increases in some PR-associated microbial signatures,
i.e., Eggerthella (p = 0.1) and Adlercreutzia (p = 0.04) (Figure S7). Supporting an association
between these potential GM signatures of platinum response and therapeutic outcome, 67%
of PS patients who received neoadjuvant chemotherapy relapsed at 6 months of follow-up
compared to 44% of PS patients of the adjuvant group (Table 1).

To further explore the GM compositional variation in relation to the therapeutic
response, we established co-abundance associations of genera and then clustered correlated
taxa into co-abundance groups (CAGs) describing the GM structures found across the
whole dataset (permutation multivariate analysis of variance, p < 0.05; see Figure S8). Four
CAGs were identified and named based on the dominant (i.e., the most abundant) genus
within each of them (Bacteroides, Collinsella, [Ruminococcus], and Faecalibacterium). The CAG
relationships are shown as Wiggum plots in Figure 6. Regardless of the treatment group,
PR patients were characterized by Collinsella CAG (cyan), especially the co-abundance of
Bifidobacterium and Turicibacter, as well as by Eggerthella, belonging to the [Ruminococcus]
CAG (dark blue). The Collinsella CAG was also represented in PS patients but with mostly
distinct genera, including Veillonellaceae members. On the other hand, PS patients shared
an overrepresentation of the Bacteroides CAG (brown) with co-abundance of Desulfovibrio,
Odoribacter, Phascolarctobacterium, and Methanobrevibacter along with other treatment group-
specific genera. Again, the Bacteroides CAG was also represented in PR patients, especially
those receiving adjuvant therapy, but with much increased proportions of [Eubacterium] and
Dehalobacterium. The Faecalibacterium CAG (green) with co-abundance of well-known SCFA
producers such as Faecalibacterium, Lachnospira, Ruminococcus, Roseburia, and Coprococcus
was mostly represented in the neoadjuvant treatment group regardless of response.
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Figure 5. Potential taxonomic signatures of therapeutic response in EOC patients receiving neoadjuvant or adjuvant

chemotherapy. Differentially represented taxa between platinum-sensitive (i.e., PS) and platinum-resistant (i.e., PR) EOC

patients receiving neoadjuvant (A) or adjuvant (B) chemotherapy were identified by linear discriminant analysis (LDA)

effect size (LEfSe) analysis. Left, LDA scores; right, cladograms. The logarithmic threshold for discriminative features was

set to 2.0. See also Figure S5.



Cancers 2021, 13, 3999 13 of 20

   

Figure 6. Co-abundance groups in the gut microbiota of EOC patients receiving neoadjuvant or adjuvant chemotherapy.

Wiggum plots show the pattern of variation of the four identified co-abundance groups (CAGs) in EOC patients receiving

neoadjuvant (top) or adjuvant (bottom) chemotherapy. Patients were stratified by response to therapy: PR, platinum-

resistant (left) vs. PS, platinum-sensitive (right). CAGs were named according to the most abundant genera and color

coded as follows: Bacteroides (brown), Collinsella (cyan), [Ruminococcus] (dark blue), and Faecalibacterium (green). Each genus

is depicted as a node whose size is proportional to the over-abundance relative to background. Positive and significant

Kendall correlations between two or more genera are indicated with lines connecting the nodes (p < 0.05). The thickness of

the lines was drawn in proportion to the correlation strength. See also Figure S8.

3.5. Predicted Functional Profiling of the Gut Microbiota in EOC Patients during Chemotherapy

In order to gain insights into the functional variation of the GM of EOC patients during
chemotherapy, 16S rRNA gene sequencing data were used to predict GM functionalities
through the PICRUSt2 pipeline [26]. A total of 129 MetaCyc pathways were identified by
LEfSe as potential functional markers of response (Figure 7 and Table S1). In particular, in
the adjuvant group, almost all of the discriminating functionalities (83.0% for PR patients
and 73.2% for PS patients) belonged to the class of biosynthesis, i.e., they were involved in
the synthesis of small molecules, macromolecules, and cell structure components (e.g., nu-
cleotides, amino acids, vitamins, carbohydrates, fatty acids, and lipids). These biosynthetic
capacities were also similarly represented between PR and PS patients from the neoadju-
vant group but with lower overall values (37.9% for PR and 39.0% for PS patients). The
rest of the discriminating functionalities were associated with the degradation of the same
molecules or with the generation of energy precursors. Interestingly, among the predicted
functions that discriminated for PR patients, we found pathways directly involved in
fermentation to lactate (i.e., homolactic fermentation, heterolactic fermentation, mixed acid
fermentation, Bifidobacterium shunt, hexitol fermentation to lactate, formate, ethanol, and
acetate in the neoadjuvant group and pyruvate fermentation to acetate and lactate II in the
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adjuvant group). In contrast, none of the inferred GM activities characteristic of PS patients
were associated with lactate production for any of the chemotherapy regimens.

Figure 7. Potential inferred metagenomics signatures of therapeutic response in EOC patients receiving neoadjuvant or adju-

vant chemotherapy. Differentially represented inferred functions between platinum-sensitive (i.e., PS) and platinum-resistant

(i.e., PR) EOC patients receiving neoadjuvant (A) or adjuvant (B) chemotherapy were identified by linear discriminant

analysis (LDA) effect size (LEfSe) analysis. The logarithmic threshold for discriminative features was set to 2.0. See also

Table S1 for MetaCyc pathways and corresponding superclasses.
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4. Discussion

As far as we know, for the first time, we performed a prospective study on the profile of
GM of women with EOC and reconstructed its trajectory over the course of chemotherapy
in relation to disease severity (and consequently to the treatment administered, neoadjuvant
vs. adjuvant) and therapeutic response (PR vs. PS). As already observed in other tumor
contexts [40–43], the GM of patients at baseline (i.e., before anti-cancer treatments) showed
some unbalanced, potentially dysbiotic traits, compared to healthy subjects matched for
several GM-associated confounding factors (i.e., age, sex, BMI, and geography). In particu-
lar, EOC patients were depleted of most of the typically health-associated GM members,
such as Blautia, Coprococcus, Lachnospira, Dorea, and Roseburia, all of which belong to the
Lachnospiraceae family, as well as Bifidobacterium, a well-known commensal probiotic. It
is widely recognized that these microorganisms produce SCFAs, i.e., key metabolites to
maintain host metabolic, immunological, and neurological homeostasis [44,45], and their
decrease probably represents a non-specific shared response to diseases, as recently dis-
cussed [46]. On the other hand, EOC patients were particularly enriched in members of
Coriobacteriaceae, including Adlercreutzia and especially Collinsella. As for the latter, it was
recently associated with metabolic disorders [47,48] and suggested to play a role in altering
intestinal permeability, contributing to a pro-inflammatory state through increased produc-
tion of chemokines and IL-17A, even in other pathological contexts, such as rheumatoid
arthritis [49]. It is also worth noting that Collinsella as well as other Coriobacteriaceae compo-
nents were found to be overrepresented in the GM of some cancer patients, including those
with higher grade breast and colorectal cancer [50,51]. Although we are still a long way
from defining “healthy” vs. “dysbiotic” microbiomes [52], all these characteristics could be
associated with loss of intestinal homeostasis that, with adequate caution, could be linked
to the development and/or the progression of various disorders.

In line with the literature available on the effects of systemic anticancer therapy on
GM in different types of cancer, including different chemotherapy agents and treatment
settings [53], we found that chemotherapy further aggravated the GM imbalance of EOC
patients with reduction of alpha diversity, further decline in the proportions of beneficial
microbes, such as Lachnospiraceae and Ruminococcaeae members, and a further increase in
Coriobacteriaceae. However, the most striking findings emerged when the trajectories of
GM were re-analyzed in relation to the therapeutic response. In fact, we observed that
PR and PS patients underwent distinct dynamics of alpha and beta diversity and differed
in the relative abundance trends of certain taxa. Specifically, a progressive reduction of
alpha diversity was observed for PR patients, while in PS patients, the diversity values
remained mostly stable and generally higher. Higher values of alpha diversity halfway
through the chemotherapy treatment were associated with longer progression-free and
overall survival in the whole cohort. Moreover, unlike PS patients, the GM of PR patients
underwent considerable fluctuations in terms of beta diversity mostly higher than the
baseline inter-patient variability, thus highlighting a high degree of intra-patient temporal
instability. It should be remembered that diversity and stability are essential ecological
characteristics of GM [54] and are considered hallmarks of a healthy intestine and gener-
ally good health, the loss of which is repeatedly associated with poor prognosis ranging
from infectious complications to mortality [35,55]. From a taxonomic standpoint, the GM
of PR patients preserved the overabundance of Coriobacteriaceae members—particularly
Eggerthella—and exhibited a peculiar overrepresentation of Bifidobacterium over time regard-
less of chemotherapy treatment group. It is worth noting that all of these microorganisms
produce lactate as part of their metabolism [49,56,57], as also supported by inferred metage-
nomics. Furthermore, Eggerthella is known to use arginine as an energy source with the
production of ornithine [58], which in turn serves as a precursor for the biosynthesis of
putrescine, spermidine, and spermine. In light of the established role of polyamines in mul-
tiple oncogenic pathways [59], it is possible to speculate that the extra supply of precursors
by Eggerthella might replenish the polyamine pool, thus contributing to tumor progression
and therefore to therapy failure. As for Bifidobacterium, its overrepresentation in the GM of
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PR patients apparently contrasts with the data available in the literature that indicate it
as an immunotherapy-favorable microorganism [16,60]. However, some strains were also
shown to promote immunotolerance via T-regulatory cells [61], which may be unfavorable
in some cancer settings, such as EOC [62]. On the other hand, Veillonella, Megasphaera and
Dialister, all lactate utilizers belonging to the Veillonellaceae family, along with the SCFA pro-
ducers Catenibacterium and Anaerotruncus were distinctly associated with a more favorable
platinum response (i.e., they were overabundant in PS patients). Lactate is a key element
in tumor metabolism. Produced in copious amounts by cancer cells through increased
aerobic glycolysis (the so-called Warburg effect), it is necessary for their self-sufficiency;
it stimulates angiogenesis and tumor growth, promotes cell migration and metastasis,
and contributes to immune escape by acidification of the tumor microenvironment [63,64].
On the other hand, as discussed above, lactate is also a common fermentation product of
some GM members, although it is generally not detectable in feces, as it is absorbed by
intestinal cells or used by lactate-consuming taxa. Among the latter, Veillonella was recently
implicated in the disposal of exercise-induced lactate, which can cross to the gut lumen,
thus becoming available for alternative catabolic routes [65]. It is therefore tempting to
hypothesize that the aforementioned GM signatures of therapeutic response (i.e., increased
representation of lactate-utilizing bacteria and reduced proportions of lactate producers
and ability to ferment to lactate) are linked to the lactate cycle, altering its bioavailability
and thus influencing tumor progression and the efficacy of chemotherapy. It must be said
that none of the discriminating microorganisms identified were differentially represented
at the time of diagnosis between PR and PS patients, suggesting the existence of a critical
time window during the chemotherapy treatment in which peculiar microbial networks are
established that could influence the efficacy of therapies. Not least, some potential micro-
bial signatures of therapeutic failure appeared in the GM of PS patients of the neoadjuvant
group in the follow-up (i.e., Adlercreutzia and Eggerthella overabundances) parallel to the
onset of relapses, which further strengthens their relevance as possible prognostic markers.
Despite the interesting results of this work, several limitations should be mentioned: the
small sample size (especially the low number of PR patients receiving adjuvant chemother-
apy), the inclusion of a single histotype (which limits the generalizability of our findings),
the unsystematic sampling (for practical reasons, fecal samples were not collected at every
time-point), and the inability to measure circulating lactate levels. Furthermore, although
high-grade serous EOC is often associated with pelvic masses compressing the sigmoid
and the rectum, thus leading to constipation and subocclusion, we did not systematically
collect information on bowel movement quality, which is known to be among the main
microbiota-associated confounding factors [38].

5. Conclusions

This pilot study highlighted distinct GM trajectories in EOC patients during chemother-
apy treatment closely related to the therapeutic outcome. In particular, the potential GM
signatures found suggest the possible involvement of certain GM members in regulating
the levels of the oncometabolite lactate through enhanced production (lactagenesis) or
disposal. This new evidence related to the GM-EOC relationship needs to be confirmed in
larger cohort studies involving multiple histological types with different chemosensitivity
and prognosis, collection of various biological samples (including blood) and host meta-
data, and possibly the combination of different approaches, including omics, functional
analysis, and animal models, to uncover the role of intestinal microorganisms in favoring
or, vice versa, worsening the clinical response to EOC therapy. Correlation vs. causation
needs to be dissected as well.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/

10.3390/cancers13163999/s1, Figure S1: Alpha and beta diversity in EOC patients during neoadju-

vant or adjuvant chemotherapy, Figure S2: The compositional structure of the gut microbiota of EOC

patients during neoadjuvant or adjuvant chemotherapy, Figure S3: Beta diversity in EOC patients

stratified by therapeutic response during neoadjuvant and adjuvant chemotherapy, Figure S4: The gut
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microbiota of EOC patients at diagnosis does not stratify by disease severity or therapeutic response,

Figure S5: Temporal dynamics of the main discriminating taxa for platinum-resistant or platinum-

sensitive EOC patients during neoadjuvant or adjuvant chemotherapy, Figure S6: Association of gut

microbial taxa and survival in EOC patients receiving chemotherapy treatments, Figure S7: Variations

in the potential gut microbial signatures of therapeutic response in the follow-up, up to 6 months after

the end of therapy, Figure S8: Assignment of bacterial co-abundance groups (CAGs), Table S1: Meta-

Cyc pathway and superclass information for the discriminating pathways between platinum-resistant

and platinum-sensitive EOC patients receiving neoadjuvant or adjuvant chemotherapy.
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